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Abstract: Semantic segmentation is an emerging field in the computer vision community where one can segment and label an
object all at once, by considering the effects of the neighbouring pixels. In this study, the authors propose a new semantic
segmentation model that fuses hyperspectral images with light detection and ranging (LiDAR) data in the three-dimensional
space defined by Universal Transverse Mercator (UTM) coordinates and solves the task using a fully-connected conditional
random field (CRF). First, the authors’ pairwise energy in the CRF model takes into account the UTM coordinates of the data;
and performs fusion in the real world coordinates. Second, as opposed to the commonly used Markov random fields (MRFs)
which consider only the nearby pixels; the fully-connected CRF considers all the pixels in an image to be connected. In doing
so, they show that these long-term interactions significantly enhance the results when compared to traditional MRF models.
Third, they propose an adaptive scaling scheme to decide the weights of LiDAR and hyperspectral sensors in shadowy or sunny
regions. Experimental results on the Houston dataset indicate the effectiveness of their method in comparison to the several
MRF based approaches as well as other competing methods.

1 Introduction
By capturing information from hundreds of frequencies of light,
hyperspectral imaging provides valuable information on the
material of the object. The use of this information on remote
sensing has been a highlighted topic of research in recent years.
Even though the information on hundreds of spectral bands of a
surface can be stored within one pixel, factors such as atmospheric
effects and illumination may cause misclassification and decrease
the overall performance in urban areas [1, 2]. To overcome this
problem, hyperspectral data is commonly fused with light detection
and ranging (LiDAR) data, which provides elevation information,
and is less sensitive to atmospheric conditions [3].

The goal of this study is the semantic segmentation of
hyperspectral and LiDAR datasets. Semantic segmentation refers
to the joint segmentation and classification of an image, and it is an
active research topic in the computer vision field [4–7]. Semantic
segmentation aligns with the spatial-spectral segmentation studies
in the hyperspectral community, which also jointly segment and
classify the data while taking into account the neighbouring
information. While the semantic segmentation studies from the
computer vision field have been making a significant use of
conditional random field (CRF)/MRF (Markov random field)
models [6, 8–15]; the spatial-spectral segmentation studies in the
hyperspectral imaging field have been predominantly using the
MRF models [16–20] and not the CRF. More recently, MRF
models were used for the fusion of hyperspectral and LiDAR data
in [21]. However, to the best of our knowledge, there are no studies
that fuse hyperspectral and LiDAR data under a fully-connected
CRF model.

CRF and MRF are models that provide a graphical model for
finding the maximum a posteriori (MAP) solutions. One major
difference is that the MRFs are generative models, whereas the
CRFs are discriminative [22]. On the other hand, both models
typically consider only the statistical relationship between the 4 or
8 neighbouring pixels to make the inference tractable; which is
solved using graph-cut or message passing techniques. Although
considering only the close-neighbours permit efficient inference,
the traditional MRFs and CRFs have restricted expressive power as
they are unable to enforce the high-level structural dependencies
between pixels [23].

In this study, we propose an alternative approach to the
semantic segmentation of hyperspectral images fused with LiDAR
data, in which fully-connected CRFs are used. As opposed to the
traditional close neighbourhood CRFs, fully-connected CRFs [4]
consider all the pixels in an image to be connected, and can,
therefore, model the long-range dependencies. To the best of our
knowledge, we are the first group to investigate the potential of
fully-connected CRFs on the fusion of LiDAR and hyperspectral
data.

Our proposed model is depicted in Fig. 1. On the left branch,
spectral data is preprocessed using a 3D Gaussian Filter and
insignificant features are reduced using the HySime [24] algorithm.
Then, probability maps for spectral data are computed using
probabilistic classifiers such as the probabilistic support vector
machine (pSVM) or subspace Multinomial Logistic Regression
(MLRsub) [5]. On the right branch, LiDAR elevation data is
concatenated with the first return intensity, which is filtered with
Gaussian and median filters. Then, extended morphological profile
(EMAP) [25] features are extracted from the LiDAR data and these
features are again fed to pSVM or MLRSub classifiers. These
classifiers compute the pixel-wise probabilities which form the
unary energies in our proposed CRF model. However, they lack a
spatial smoothness term that would make each class coherent in
itself. For that purpose, we propose a new pairwise energy for the
fully-connected CRF, which uses the three dimensional physical
distances of pixels. The first two dimensions (2Ds) of this distance
are obtained from the Universal Transverse Mercator (UTM)
coordinates of the hyperspectral data, and the 3D is the elevation
information from the LiDAR data. Then, using our newly proposed
pairwise energy for fully-connected CRF, the graphical model is
solved using message-passing for inference. In addition, we
propose a simple experimental solution to determine the weighted
contribution of LiDAR to hyperspectral data in shadow and sunny
regions.

The remaining of this paper is organised as follows. Section 2
explains some of the related studies. Section 3 formulates
classification as an energy minimisation problem that is written as
the sum of a unary energy term and a pairwise energy term. In
Section 3.1, the unary energy term is defined and two of the unary
classifiers that are compared in this paper, the pSVM and the
MLRsub are briefly explained. Also, an algorithm is proposed to
adjust the weights for the shadow and non-shadow regions when
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combining the unary terms. Then, in Section 3.2, the pairwise
energy is defined for the CRF framework and solved with mean
field approximation. These approaches are tested on the Houston
dataset as given in Section 4. First, data is passed through a
preprocessing stage as explained in Section 4.1. Afterwards,
learning results are given in Section 4.4; and the paper is concluded
in Section 5. For the interested readers, the pSVM and the MLRsub
are explained in Appendices 8.1 and 8.2.

2 Literature review
There are several studies that use random fields on hyperspectral
datasets alone (where no fusion is considered). In [19], pSVM is
used for spectral classification, and a spatial energy term is used for
spatial information, which is solved via graph-cuts. In [20], support
vector machine (SVM) is again used to extract the class
combination maps for a hyperspectral image. Later, subspace
projection-based MLRsub [5] is used in order to obtain global and
local posterior probabilities. Classifier results are fused together
within a MRF model. Since in both cases, pSVM and MLRSub are
proven to be good candidates for the unary term of the energy
function, we also use these two classifiers for the spectral term in
our experiments.

MLR classifiers model the probability distribution of a
classification problem as an MLR function [26]. MLRSub, as
introduced in [5] assumes a linear mixture model of the
hyperspectral image pixel. Using the eigenvalues of the training
set, it extracts the subspace, i.e. the most important components of
the pixel, and tries to minimise the effect of unrelated information.
Then, logistic regression parameters are learned from the subspace
of the pixels, and classification is performed. Several other studies
including [3, 20] also mark that MLRSub classifier is good at
dealing with pixels that have mixed data, due to its basic
assumption that all pixels are noisy mixtures of data.

Another highly popular concept due to its success is the use of
Morphological Attribute Profiles (MAPs) [3, 21, 27]. Introduced in
[25], MAPs use the openings and closings of the image, exploiting
the spatial attributes of the objects in an image such as area,
standard deviation or moment of inertia. Similar regions with given
parameters are filtered and their geometry is preserved. These
attributes introduce new features to the observed data.

MAPs have been found useful also in the fusion of LiDAR and
hyperspectral data as studied in [3, 27, 28]. Specifically, in [3], the
authors use MAPs of LiDAR elevation and hyperspectral data and
classify the data using MLRsub classifier and MRFs. The method
in [27] extracts the clouded region using Attribute Profiles and
applies a separate classification within this region. It assumes the
area of the clouded region to be much larger than the objects on the
image. Also, the authors [21, 28] propose a pairwise energy term

that penalises the pixel in focus if any one of the spectral, spatial or
morphological features is too different than the other two.

Different from these related approaches, instead of performing
fusion during feature extraction, we combine the results of energy
descriptors and jointly solve the labelling problem. In our proposed
method, processing each sensor data with a separate unary
classifier helps us overcome the Hughes Phenomenon [29], i.e. the
curse of dimensionality issue which is frequently encountered in
fusion problems. With our pairwise energy term, we guide the
spectral classification results to be consistent with the spatial
properties including elevation. Then, we utilise the fully-connected
CRF method for the first time and make use of the long-range
dependencies of the pixels. In doing so, we integrate the fusion task
seamlessly into the energy model for semantic segmentation.

3 Proposed method: energy minimisation with
fully-connected CRFs
In MRFs and CRFs, an image is represented as a graph G = (V , E)
where the vertices V correspond to the pixels, which are connected
with edges E. In a segmentation problem, this graph connectivity is
explained in terms of a probabilistic conditional dependency, where
the labels associated with the pixels are considered as the hidden
random variables. Then, a joint probabilistic model is defined over
the pixel values and the hidden variable, which is used to
understand the statistical dependencies between the hidden
variables by putting them into groups. These groups are often pairs
shown as edges in a graph [30]. When hidden variables are
associated with the nodes in this way and connected in a graph
structure, neighbouring sites can be adjusted to have the same
label. If all the pixels in an image are linked together explicitly, one
obtains a densely connected graph. Also called as fully-connected
graphs, densely connected graphs are computationally expensive to
solve. As a solution, Markov models explicitly represent only the
association between neighbouring pixels and significantly decrease
the computational cost. The fully-connected CRFs that is being
used in this paper, however, takes into account all the long-range
interactions and also provides a computationally feasible solution.

Recent years have seen the emergence of CRFs [13, 22], which
are discriminative variants of MRFs and have the ability to model
complex spatial dependencies. With this ability, they have shown
quite a bit of success in the semantic segmentation of natural
images. Motivated by these successes, we developed a novel
segmentation approach for LiDAR and hyperspectral datasets via
the use of fully-connected CRFs. In the rest of this section, we
define the energy function for a fully-connected CRF for a
semantic segmentation problem and investigate the unary and
pairwise energies.

Semantic segmentation task is defined as assigning each pixel
in an image to a class from a previously determined class set
C = {C1, C2, C3, …, Cn}. In CRFs, the MAP labelling is commonly
expressed as a Gibbs distribution. Differently put, the energy
function is expressed in terms of the posterior as

E(y; x) = − ln(P(Y = yi X = xi)) − ln(Z) (1)

where x is the observed image with M pixels such that
x = [x1, x2, …, xM], and xi is a k -dimensional vector such as
hyperspectral or LiDAR, y = [y1, y2, . . . , yi, …, yM] is the assigned
class and Z is a normalisation constant.

Therefore, the MAP inference of y can be done by maximising
the posterior, or equivalently by minimising the energy

y∗ = argmax
y ∈ C

P(Y = yi xi) = argmax
y ∈ C

E(yi; xi) (2)

The energy functions for many commonly used Markov models
can be written as the sum of a unary term and a pairwise term [23]

E(y; x) = Eunary + Epairwise (3)

Fig. 1  Flowchart of our proposed method
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For MRFs, the energy generally consists of potentials of degree
one and two, i.e.

E(y; x) = ∑
i ∈ V

ψi(yi; x) + ∑
(i, j) ∈ N

ψi j(yi, yj) (4)

where N represents a neighbourhood, ψi is the clique potential and
ψi j is the pairwise potential.

It is important to note that the pairwise potential ψi j does not
depend on the image data. If we condition the pairwise potentials
on the data, then we obtain the CRF model, which is defined as

E(y; x) = ∑
i ∈ V

ψi(yi; x) + ∑
(i, j) ∈ N

ψi j(yi, yj; x) (5)

The unary term of the energy function is the probabilistic
classification of every pixel to a certain class. The pairwise term is
concerned about the spatial relation of the pixel with its
neighbouring pixels. In Section 3.1, the classifiers that are used to
compute the unary energy function, and our proposed energy
functions for the pairwise term are discussed in further detail.

3.1 Unary energy

For the unargy energy term, we consider two separate unary
probabilistic distributions, namely P(Ci xi) and P(Ci hi) for
hyperspectral and LiDAR data. Here xi are the hyperspectral data;
and hi are the intensity and elevation information, extracted from
LiDAR data, which is expanded using Morphological Attributes.
Therefore, our proposed unary probability distribution energy is as
follows:

Eunary = − k[αln P(Ci xi) + (1 − α)ln P(Ci hi)] (6)

where k is a constant for emphasising the weight of the unary term
with respect to the pairwise term; and α is a constant that adjusts
the weights between the two probability distributions. Here, there
are two main benefits of using two separate classifiers; first, the
curse of dimensionality is mitigated by separating the datasets, thus
reducing the number of dimensions. Second, the adverse effects of
both datasets on the overall classification can be reduced by
adjusting the value of alpha.

Owing to their proven track record in [5, 19, 20], we use the
pSVM and MLRSub classifiers to compute the posterior
probabilities in (6). The pSVM [31] is a method that maps the
traditional SVM outputs to posterior probabilities. MLRSub [5] on
the other hand is an MLR method that works on the basic
assumption that a pixel in an image contains a mixture of materials.
The details for pSVM and MLRSub are given in Appendix 8.1 and
8.2. In the rest of this paper, we refer to the unary energy term as
dSVM or dMLRsub depending on which function we use as the
classifier. In our experiments, we found k = 2.5 to be a good value
for preserving the edges.

In (6), the value of α is critical when one sensor is more reliable
than the other. For instance, the area under the cloud gives a low
reflectance, which makes the LiDAR more accountable and
discriminating. To handle such cases, we propose an adaptive

selection for α, in which, LiDAR is the only source when the
reflectance of a pixel is lower than one-fourth of the average value
of all the pixels in an HSI. This adaptive selection strategy is
summarised in Algorithm 1 (see Fig. 2). This strategy significantly
simplifies the search for α, which could be overwhelming were it
done iteratively.

3.2 Pairwise energy with the fully-connected CRF

As opposed to the MRFs that are generative models, CRFs are
discriminative methods. In the generative models, a joint
probability over observations and labels are defined and
enumerated for all possible observations, which becomes
intractable when long-range dependencies of the observations are
considered. Therefore, the CRFs provide an alternative by looking
at the conditional models instead and model the probabilities of
possible label sequences given an observation sequence [22].
Although both MRFs and CRFs are written as the sum of a unary
and a pairwise energy function, one major difference is that the
CRFs learn the parameters of the pairwise energy, giving them the
discriminating power.

CRFs have the advantage of incorporating smoothness terms
that maximise the label agreement between similar pixels, and also
modelling the contextual relationships between object classes.
However, pairwise potentials of the CRFs are typically defined
over neighbouring pixels and patches; which may not adequately
model long-range interactions within the image and may over-
smooth the object boundaries. To model the long-range
interactions, the fully-connected CRF establishes pairwise
potentials on all pairs of the pixels in the image. The computational
burden to do inference on the fully-connected CRF has been
resolved when Krähenbühl and Koltun [4] developed a highly
efficient inference algorithm based on the mean field
approximation to the CRF distribution.

In the fully-connected CRF model, the energy is also composed
of a unary term and a pairwise term as was given in (5). However,
the pairwise term computes the relation between all the pixels in
the image, as opposed to taking just a neighbourhood. The pairwise
potentials are defined over all the pairwise cliques in the following
form:

Epairwise = ∑
i < j

μ(Ci, C j)k(xi, x j) (7)

where μ is a label compatibility function which takes into account
the interaction between the labels, and k(xi, xj) is a Gaussian kernel
that is the weighted addition of an appearance term and a
smoothness term

k(xi, xj) = w(1)exp( − B)
appearance

+ w(2)exp( − A)
smoothness

(8)

where

A =
pxi − px j

2

2θα
2 +

pyi − pyj

2

2θα
2 +

phi − phj

2

2θα
2 + xi − xj

2

2θβ
2 (9)

Fig. 2  Algorithm 1: Algorithm for adaptive selection
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and

B =
pxi − px j

2

2θγ
2 +

pyi − pyj

2

2θγ
2 +

phi − phj

2

2θγ
2 (10)

Here w are the weights and pi are the pixel locations in 3D space
using UTM coordinates. In doing so, we consider both the
hyperspectral sensor resolution in the x–y direction, the height of
each pixel as measured by LiDAR and the spectral differences of
two pixels as measured by the spectral sensor. As a result, the
energy is lower for pixels that are distant in any dimension.

In (8), the appearance term assumes that nearby pixels with
similar features are likely to be in the same class. The smoothness
term removes the small isolated parts within the class regions.
Also, the label compatibility function m is learned during training.

Once the Gibbs energy E of a labelling is determined with the
unary and pairwise terms, the CRF can be characterised by a Gibbs
distribution P formed from these energies as it was given in (1).
Since computing, the distribution P for all pixels in an image
would be very time consuming, Krähenbühl and Koltun use mean
field approximation which computes an approximate probability
distribution Q by minimising the KL-divergence between P and Q.
The details of the mean field approximation on the fully-connected
CRF can be found in [4, 32].

4 Experimental analysis
In this study, the University of Houston dataset provided by the
2013 GRSS Data Fusion Contest [33] has been used. The dataset
has both LiDAR and hyperspectral data, contains 15 classes, and
around 200 training and 1000 test pixels for each class. A false
RGB image of the dataset is shown Fig. 3. Note that on this image,
there is a cloud that covers most of the commercial, railway and
highway class test pixels. Each sensor's data is first separately
preprocessed and its features are computed. Then, each pixel is
classified with the unary classifiers and the results are combined
using the fully-connected CRF model, which introduces a
smoothness over the unary classifiers as explained in the following
sections.

4.1 HSI preprocessing and feature extraction

The hyperspectral image has 144 spectral bands. The data is first
filtered with a 3D Gaussian filter with σ = 0.1, each feature is
scaled between [0,1] and then processed with HySime [24] in order
to reduce the number of spectral bands. HySime performs
dimension reduction without any supervision. The resulting data
usually has 18–22 spectral bands.

4.2 LiDAR preprocessing and feature extraction

The LiDAR dataset includes both the intensity and elevation
information. The first, last and average return intensities are
provided, however only the first return intensity is considered in
this study. Intensity is the first median filtered and then Gaussian
filtered in order to decrease the effect of the saturated and noisy
areas. The elevation and intensity images are used to extract the
EMAP of the LiDAR data. These EMAPs are obtained by
combining area and standard deviation attribute profiles of the
image. For area attributes, parameters were selected to be between
100 and 500 with increments of 50. For standard deviation
attribute, the values selected to be between 2.5 and 20 with
increments of 2.5. This resulted in a 66-dimensional processed-
LiDAR data, ready to be classified.

4.3 Impact of the parameters

The preprocessed HSI and LiDAR data are used in training pSVM
and MLRSub classifiers. Then, the weighted results of the
classifiers are computed based on the α parameter. One way to
learn α is through an exhaustive search on a validation set, as
shown in Fig. 4. It can be observed that the value of α has a
dramatic effect on the overall accuracy. A second way to select α,
which we proposed in this study in Algorithm 1 (Fig. 2), is to make
it adaptive based on shadow information. With our proposed
method, not only the classifier performance is increased in
shadowy areas, but also the time consuming iterative search for α
is eliminated.

For the other parameters in (8), we used ω(1) = ω(2) = 4,
θα = θβ = θγ = 10; and chose the minimum pairwise cost to be 0.
Higher Gaussian and bilateral weights lead to too much
smoothness, whereas a higher standard deviation parameter would
have the opposite effect on the resulting image.

4.4 Results and discussion

In this section, we first compare the alternative classifiers in
Table 1 and also evaluate their use as our unary term. In the first
four columns, we show the classification results of pSVM and
MLRSub on HSI-only and LiDAR-only data. Here, the naming
convention is such that the classifier name is followed by the
dataset. For example, pSVM-Spectral refers to training a pSVM
classifier on the hyperspectral data; and MLRSub-LiDAR refers to
training an MLRSub classifier on the LiDAR data. The numbers
within the columns represent the accuracy percentage of the
specified class. From these results, it can be seen that pSVM is a
better classifier than MLRsub both in the spectral domain and the
LiDAR domain. Then we use (6) and compute the classification
results of our unary term as given in the fifth and sixth columns,

Fig. 3  Houston data shown as a false RGB image. The shadow on the right-hand is a cloud that covers a large area of the ground
 

Fig. 4  Impact of α. The best value of alpha for SVM is α = 0.5 and for MRLSub α = 0.42
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named as dSVM and dMLRSub. Upon observing the overall
accuracies (OAs), we see that dSVM gives better results than
dMLRSub. The accuracy of 83.217% on HSI-only data and
73.731% on LiDAR-only data is increased to 89.055% using our
proposed unary term. Finally, we use these unary classifiers and
introduce our proposed pairwise term in a fully-connected CRF, the
results of which are given in the last three columns. Here, dSVM-
CRF and dMLRSb-CRF are the results of the classifiers when
fully-connected CRF is applied and where the LiDAR and
hyperspectral have equal weights. If we use our algorithm for α
selection, which provides the weighted addition of LiDAR and
hyperspectral data for shadowy and sunny areas, we obtain the
result in dSVM-CRF-α; which has the best OA with 91.547%.

Visual results are given in Fig. 5. In Figs. 5a and b, the unary
classification using SVM classifier results are given for
hyperspectral and LiDAR only data, and it can be observed that the
results are not smooth. Also, it can be observed that there are many
wrongly classified pixels on the right of the hyperspectral data due
to the cloud coverage; however, the LiDAR information seems not
to be affected from the clouds. Using both datasets, we removed
the effect of the shadow on the image which can be seen in Fig. 5c.
Fig. 5d shows fully-connected CRF results. In Fig. 5e, we show the
misclassified points of the test data in red, and the correctly
classified test points in black.

Next, we compared our results to competing approaches in
Table 2. Here, Potts SVM-MRF represents the classical MRF
which uses a single probability distribution without any dimension
reduction for the unary term and Potts model for the pairwise term
as in [37]. SLRCA [34] uses random forests on features extracted
with sparse and low-rank component analysis; DFC is the winning
method in the Data Fusion Contest [28]; and GBFF [35] uses deep
convolutional neural networks on extinction profiles. Further,
dSVM-MRF and dMLRSub-MRF are the results of SVM and
MLRSub classifiers combined in an MRF framework as proposed
by us in an earlier study in [36]. Upon comparing our method with
other state-of-the-art approaches in Table 2; it can be observed that,
dSVM-CRF-α outperforms all the methods presented here.

The confusion matrix for the dSVM-CRF-α is given in Table 3,
in which red entries in each column denote the class with the
highest confusion rate for that class. For example, it can be seen
that the worst classified class is the parking lot 2; and it is mostly
confused with parking lot 1. This is a very reasonable error
considering how difficult it would be to differentiate two parking
lots. Next, the lower accuracy of the highway and residential
classes can be explained by most samples of these classes being
under the cloudy region of the image. Further, there is a confusion

between the healthy grass, stressed grass and the soil class, as a
mixture of these classes within the same pixels can usually be
found together.

For comparison purposes, the confusion matrix from the
dSVM-MRF method is given in Table 4. Comparing Tables 3 and
4, it can be observed that the distribution of misclassifications has
narrowed down in Table 3, and the misclassifications were more
accurate on the closest classes. For instance, the biggest confuser
for healthy grass (first column) is the soil class; and the biggest
confuser for the railway class (column 11) is the parking lot where
pebbles can be found on both surfaces. In doing so, our dSVM-α-
CRF method reduced the variation of misclassification in most
classes, which adds consistency to the classifier.

It is hard to make a detailed comparison to the SLCRA and
DFC methods as confusion matrices were not provided in [34] or
[35]. In addition to an overall better accuracy and a better kappa
value, a general look indicates that our dSVM-α-CRF method is
particularly good at detecting the highway class; whereas the
SLCRA and DFC are better at detecting stressed grass. Also,
dSVM-α-CRF performs better for targets under the cloudy region
whereas the SLRCA and GBFF perform better for classes where
training samples were taken from environments where the classes
are closely mixed together such as the parking lots 1 and 2.

5 Conclusion
In this paper, we introduced a novel semantic segmentation
approach using the fully-connected CRF, where we can both
segment and label pixels at the same time. The fully-connected
CRF did not have an efficient implementation until very recently,
and to the best of our knowledge, this is the first study to use fully-
connected CRFs for hyperspectral and LiDAR data. With the mean
field inference of the fully-connected CRF, the algorithm is much
faster; and as compared to the SLRCA which uses random forests,
and to the GBFF which uses deep convolutional neural networks,
there are very few parameters in the framework to tweak. Further,
we not only use this implementation and introduce it to our
community for the first time; we also proposed both a novel unary
term and a pairwise term in the 3D domain using UTM
coordinates; and adjusted the fc-CRF for the fusion of
hyperspectral and Lidar data.

The fusion in UTM coordinates is skipped in many studies, but
actually makes a lot of sense to combine them in the physical
world and not in the pixel coordinates. In our pairwise term, it can
be seen that the higher the height or the spatial distance between
pixels of differently classified pixels; the energy is higher, hence

Table 1 Classification accuracies and kappa values for classical methods versus our methods (in %)
HSI only LiDAR only Our proposed unary

term
Our fully-connected CRF results

pSVM-
spectral

MLRsb-
spectral

pSVM-
LiDAR

MLRSb-
LiDAR

dSVM dMLRSb dSVM-CRF dSVM-
CRF-α

dMLRSb-CRF

healthy grass 81.671 80.342 50.427 72.270 80.057 81.766 80.057 83.096 83.096
stressed grass 82.707 80.357 67.011 45.395 86.654 83.835 85.244 85.245 77.820
synth grass 98.416 98.020 100 99.802 99.604 99.604 100 100 99.604
tree 91.761 96.875 74.716 32.765 94.318 91.193 96.307 98.769 94.697
soil 98.579 96.117 83.428 75.947 99.811 99.621 100 100 99.716
water 88.112 77.622 76.923 74.126 93.007 90.21 90.21 91.608 88.811
residential 81.810 67.444 75.373 54.478 86.194 64.366 90.112 88.619 74.067
commercial 59.069 51.757 83.001 92.213 88.699 94.777 88.889 91.453 86.989
road 76.298 62.606 66.855 36.544 88.763 62.229 95.845 96.034 83.758
highway 81.081 45.656 75.579 73.745 85.039 69.884 84.846 85.328 58.494
railway 85.579 73.814 83.397 82.163 88.235 85.389 89.943 90.417 96.395
parking lot 1 81.940 46.205 63.785 61.671 82.997 73.103 92.507 92.603 90.298
parking lot 2 65.263 52.631 62.807 92.631 78.596 83.86 69.825 70.526 74.737
tennis court 97.571 97.166 98.380 98.380 98.785 98.785 100 100 98.380
running track 94.715 95.983 68.922 89.429 99.366 97.463 99.154 99.366 97.886
OA 83.217 72.575 73.731 66.787 89.055 82.61 90.834 91.547 85.791
κ 0.818 0.7023 0.715 0.641 0.881 0.811 0.9 0.908 0.846
 

IET Comput. Vis.
© The Institution of Engineering and Technology 2018

5



the probability is lower. To the best of our knowledge, our
proposed unary term which uses probability distributions obtained
from both hyperspectral and LiDAR data classifications and
weighs them according to an alpha parameter is also a first. It can

be seen that this newly proposed unary term increases the
classification accuracy quite a bit.

The fully-connected CRF approach showed excellent outcome
in both performance and preservation of the edges. We concluded
that fusion of two unary terms and the pairwise term improve the

Fig. 5  Visual results of our proposed approach where the colour representations of the classes are given in Fig. 6
(a) Unary classification results on hyperspectral data, (b) Unary classification results on LiDAR data, (c) Unary classification results on the fusion of hyperspectral and LiDAR data,
(d) Fully-connected CRF results with α correction, (e) Classification results on the test data. Misclassified points are shown in red

 

Fig. 6  Colour representation of classes
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overall accuracy when trained with fully-connected CRFs. In the
future, each dataset can be classified with alternative classifiers,
such as deep learning, in order to achieve better results.
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Table 2 Comparison of our proposed approach against competing methods (classification accuracies in %)
Potts SVM-MRF SLRCA [34] DFC [28] GBFF [35] dSVM-MRF [36] dMLRsb-MRF [36] dSVM-CRF-α

healthy grass 82.431 81.58 73.31 78.73 80.722 81.197 83.096
stressed grass 82.989 99.44 97.84 94.92 86.936 90.132 85.245
synth grass 98.218 98.61 100.00 100 99.604 99.604 100
tree 92.898 96.12 97.82 99.34 93.655 91.477 98.769
soil 98.58 99.72 99.24 99.62 100 99.716 100
water 88.112 98.60 99.30 95.80 94.406 90.21 91.608
residential 78.078 90.39 88.15 87.87 88.153 65.205 88.619
commercial 44.634 95.73 96.20 95.25 89.459 94.587 91.453
road 76.676 98.21 86.59 89.71 91.407 71.86 96.034
highway 64.865 63.42 76.83 81.18 86.004 69.981 85.328
railway 80.93 90.70 92.41 86.34 89.089 89.564 90.417
parking lot 1 75.793 91.07 85.69 92.70 85.783 74.256 92.603
parking lot 2 60.702 76.49 76.49 87.02 78.246 86.667 70.526
tennis court 97.166 100.00 100.00 99.19 98.785 98.381 100
running track 94.503 99.15 99.58 89.64 99.789 97.886 99.366
OA 79.429 91.30 90.30 91.02 89.981 84.578 91.547
κ 0.778 0.9056 0.895 0.9033 0.891 0.833 0.908

 

Table 3 Confusion matrix for fully connected CRF (classification accuracies in %)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

healthy grass (1) 83.1 0 0 0 0 3.5 0.1 0 0 0 0 0 0 0 0
stressed grass (2) 0 85.2 0 0 0 0 0.7 0 0.6 0 0.5 0 0 0 0
synth grass (3) 0 0 100 0 0 0 0.4 0 0 0 0 0 0 0 0.2
Tree (4) 1.5 0 0 98.8 0 0 1.2 0 0 0 0 0 0 0 0
Soil (5) 9.1 11.7 0 0 100 0 0.1 0 2.0 0 0 0 0 0 0
Water (6) 0 0 0 0 0 91.6 0.6 0 0 0 0 0 0 0 0
Residential (7) 0.9 3.0 0 1.0 0 0 88.6 2.4 0 12.2 0.3 2.2 0 0 0
Commercial (8) 0 0 0 0 0 0 6.5 91.4 0 0 0 0 0 0 0
Road (9) 0 0 0 0 0 0 0.7 0 96.0 1.8 0.1 1.3 0.3 0 0
Highway (10) 0 0 0 0 0 0.7 0 4.3 0.9 85.3 0.5 0 0 0 0
Railway (11) 0 0 0 0 0 0 1.1 0 0 0.7 90.4 3.9 0 0 0
parking lot 1 (12) 0 0 0 0.1 0 0 0 0 0.6 0 7.8 92.6 29.1 0 0
parking lot 2 (13) 0 0 0 0 0 0 0 0 0 0 0 0 70.5 0 0
tennis court (14) 5.4 0 0 0.1 0 4.2 0 1.9 0 0 0.5 0 0 100 0.4
running track (15) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 99.4

 

Table 4 Confusion matrix for dSVM-MRF for comparison purposes (classification accuracies in %)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

healthy grass (1) 76.5 0.5 0 0 0 2.8 0.1 0 0.1 0 0 0 0 0 0
stressed grass (2) 6.7 86.8 0 0 0 1.4 0.7 0 1.5 0 0.2 0 0 1.2 0
synth grass (3) 0 0 99.8 0 0 0 0.1 0 0 0 0 0 0 0 1.1
tree (4) 0.7 0.1 0 97.9 0 2.1 1.9 0 0 0 0 0 0 0 0
soil (5) 8.9 9.7 0 0 99.6 2.8 0.1 0 3.5 0 0 0 0 0 0
water (6) 0 0 0 0 0 85.3 0.9 0 0 0 0.0 0 0 0 0
residential (7) 2.5 3.0 0 2.0 0 0 87.1 4.9 0 9.7 0.9 1.7 0 0 0
commercial (8) 0 0 0 0 0 0 5.4 88.9 0.1 1.1 0 0 0.3 0 0
road (9) 0 0 0 0 0 0.7 0.9 0 91.6 1.8 0.5 1.7 0 0 0
highway (10) 0 0 0 0 0 0.7 0 4.3 2.0 85.9 3.0 1.0 0 0 0
railway (11) 0 0 0 0 0 0 2.1 0 0.2 1.3 88.5 4.1 0.3 0 0
parking lot 1 (12) 0 0 0 0.1 0.3 0 0.1 0 0.9 0.1 6.0 89.1 24.6 0 0
parking lot 2 (13) 0 0 0 0 0 0 0 0 0.1 0 0 2.3 74.7 0 0
tennis court (14) 4.7 0 0 0 0 4.2 0.1 1.9 0 0 0.8 0 0 98.8 0.4
running track (15) 0 0 0.2 0 0.1 0 0.4 0 0 0 0 0 0 0 98.5
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8 Appendix
 
8.1 Probabilistic SVM

The pSVM [31] is a method that maps the traditional SVM outputs
to posterior probabilities. Consider the two-class case where for an
input xi, the label is yi ∈ { − 1, 1}, and the standard SVM output is
f i. From a given training set {(xi, yi)}, a new set is defined as
{( f i, ti)} where ti is the targeting probability representation given as
ti = (yi + 1)/2. Then, given the SVM outputs, the posterior
probability of having a label yi = 1 is computed as [17, 38]

pi = 1/exp(A f i + B) (11)

where A and B are the unknown parameters that are estimated from
the minimisation of the cross entropy

min ∑
i

tilog(pi) + (1 − ti)log(1 − pi) (12)

In the case of the multi-class SVM, the LIBSVM library [39]
employs a one-against-one approach which is based on building
multiple classifiers and using a voting strategy. With that, first, the
pairwise class probabilities ri j are estimated using (12) considering
only the ith and jth classes. Then, it solves the following
optimisation problem:

min
p

0.5∑
i = 1

k

∑
j: j ≠ i

(r jipi − ri jpj)2 (13)

subject to pi ≤ 0 and ∑i = 1
k pi = 1; and where k is the number of

data points, and r ji = 1 − ri j.
In this study, LibSVM library [39] was used and cross-

validation strategies were employed to estimate the parameters of
the SVM.

8.2 MLRsub

The strength of MLRSub comes from the MLR classifiers’ basic
assumption that a pixel in an image contains a mixture of materials
within. The mixture model of MLR is defined in [5] as

xi = mγi + ni (14)

where m = [m(1), …, m(k)] is a mixing matrix of spectral
endmembers, ni is the noise and γi = [γi

(1), …, γi
(K)] is the fractional

abundances of the endmembers of the pixel xi. As p(γi) is
unknown, computation of p(xi yi = k) is impossible without a
generative model.
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According to the proposal in [5], the observation model for the
class k can also be written as

xi
(k) = U(k)zi

(k) + ni
(k) (15)

where zi
(k) is the coordinates of the pixel xi

(k) with respect to the
basis U(k) = [u1

(k), …, ur(k)
k ], which is a set of r(k)-dimensional basis

vectors for the subspace associated with class k. If zi
(k) and ni

(k) are
assumed to be Gaussian distributed, the following generative
model can be obtained:

p(xi yi = k)N(0, α(k)U(k)U(k)T + σ(k)2I) (16)

Here, r(k) can be found by computing the eigendecomposition of the
matrix R(k) = ⟨xl(k)

(k) xl(k)
(k)T⟩. The first r(k) eigenvalues form the subspace

of the pixel according to the following relation:

r(k) = min r(k): ∑
i = 1

r(k)

λi
(k) ≥ ∑

i = 1

d
λi

(k) × τ (17)

With the help of some algebraic operations and the definition of
Gaussian Distribution Function, the following equation can be
achieved, which is an MLR [26]:

p(yi = k xi, w) = exp(w(k) f (k)(xi))
∑k = 1

K exp(w(k) f (k)(xi))
(18)

The w in the above equation is defined as w ≡ [w(1)T, …, w(K)T]
where w(k) ≡ [w1

(k)w2
(k)]T, w1

(k) ≡ − (1/2σ(k)2) and
w2

(k) ≡ (1/2σ(k)2)(α(k)/α(k) + α(k)2). This MLR model then can be
solved using the methods proposed in [5].
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